
Speed Through the
Mess: How to Build
Scalable Retrieval

in Complex Stacks

Real fixes for data slowdowns

in multi-system environments

When systems scale, speed tends to suffer.
Not all at once, but in the small delays, the
mismatched data, the dashboards that stall
when you need them most.

The problem isn’t always the code or the
hardware. It’s how data moves — or doesn’t —
through the maze of platforms, APIs, and
back-end logic holding everything together.
It’s especially tricky when that maze is a mix of
old and new: multiple ERPs, real-time APIs,
custom portals, and stacks inherited post-
acquisition.

This whitepaper dives into how to make data
retrieval fast, stable, and scalable across all
that complexity. Not by ripping everything out,
but by making the architecture smarter where
it counts.

You’ll find practical strategies for cutting
latency, fixing fragmentation, and keeping
your system responsive even when user load
and business complexity keep growing.
Because when internal systems perform with
speed and consistency, your teams can
deliver with the same reliability your
customers count on.

Every recommendation inside comes from
systems already doing the work. No theory, no
guesswork, just real patterns that hold under
pressure, fine-tuned in the middle of scaling,
and built to support companies where
performance and trust go hand in hand.

Identifying the Symptoms — What You Feel Before System Breaks

Architectural Landmines: What’s Really Behind the Lag

How To Survive When the Load Hits Hard

From Insight to Action — Your Scalability Checkpoint

3

5

9

16

Table of Contents

Speed Through the Mess: How to Build Scalable Retrieval in Complex Stacks © Expert Soft, 2025 2

Speed Through the Mess: How to Build Scalable Retrieval in Complex Stacks © Expert Soft, 2025 3

Symptoms:
What You
Feel Before
System
Breaks

Unlike small platforms where data moves
between two or three systems without much
drama, enterprise setups — well, they swear
under their breath and deal with a maze. Data
flows in from all sides: ERPs, warehouse
systems, finance tools, custom apps, and
whatever's still hanging on after the last few
acquisitions.

At some point, every big system starts to
crack. Sometimes it’s loud — full outages,
major slowdowns. But more often, it’s quiet: a
wrong search result, a delay no one can
explain, another ticket to support that didn’t
need to happen.

That’s why early signals matter. They tell you
the system’s under stress before it breaks. And
from what we’ve seen across complex
architectures, these signals tend to show up in
the same places.

Good ideas don’t just live in code.

Follow us on LinkedIn for sharp takes
on how smart people build — in tech,
teams, and everything between.

join!

What really matters here is how that data
gets pulled in. If retrieval is slow or patchy,
performance drops and everything
connected to it slips.

https://www.linkedin.com/company/expert-software-development/posts/?feedView=all

Speed Through the Mess: How to Build Scalable Retrieval in Complex Stacks © Expert Soft, 2025 4

These symptoms don’t just slow things down — they signal that your architecture isn’t keeping up
with the weight it’s carrying. Whether it’s growth, agility, or just delivering the basics without friction,
fragile data retrieval stands in the way.

The specifics may vary, but the core issue is the same: if the foundation can’t scale, neither can
everything built on top of it.

Spot the Signals Early

Symptoms: What You Feel Before System Breaks

Product pages get

slower by the week

Heavy joins, nested queries, or fragmented
cache layers can quietly pile on latency.
Multiply that by variants, custom pricing,
and regional logic and response times start
to climb.

Dashboards stall

or freeze under load

When analytics pipelines aren’t built for
concurrency or real-time pulls, even basic
dashboards choke. Especially if data is
stitched together on the fly from multiple
systems.

Pricing or availability doesn’t

match across channels

Usually caused by delayed syncs,
inconsistent caching, or APIs hitting

stale or incomplete records.

System slows down during
acquisitions or migrations

New brands or systems get plugged in, and
suddenly nothing feels stable. Behind the
scenes: conflicting data models, bloated
imports, or legacy systems that can’t keep
up with the integration layer.

Seasonal traffic or promotions
slow down the system

Sudden spikes expose the weak spots, such
as cache invalidation issues, memory leaks,
or services that scale vertically instead of
horizontally.

Speed Through the Mess: How to Build Scalable Retrieval in Complex Stacks © Expert Soft, 2025 5

Architectural
Landmines:
What’s Really
Behind

the Lag
The symptoms you’ve seen in the previous
section aren’t random. They’re surface-level
signals of deeper architectural strain. And as
your setup grows — across units, regions, and
or plugging in new platforms post-acquisition
— those weak spots only get louder.

Through audits and implementations across
retail, pharma, and industrial platforms, we’ve
seen the same root issues come up again and
again. Different stacks, same bottlenecks.

Here’s what’s usually behind the slowdown.

Modern platforms rely on third-party APIs for
everything from personalization to
geolocation and payment validation. But each
external dependency is a performance
wildcard: it can slow down page rendering,
introduce inconsistencies, or fail silently,
making troubleshooting harder.

External
dependencies

Example from Practice

A high-traffic ecommerce brand used
third-party APIs for geolocation and
store locator functionality. During
peak sales periods, these external
services became a bottleneck,
introducing random delays, occasional
timeouts, and making storefront
performance unpredictable. The team
also faced rising costs tied to request
volume.

We replaced the external calls with
lean internal services that replicated
the core features. This cut latency
across pages, eliminated failure points
during traffic spikes, and gave the
team full control over response times
and scaling.

The more real-time your experience
needs to be, the more these delays
start to hurt.

Speed Through the Mess: How to Build Scalable Retrieval in Complex Stacks © Expert Soft, 2025 6

Architectural Landmines: What’s Really Behind the Lag

Insufficient
observability

Lack of visibility makes troubleshooting
reactive and time-consuming, especially
when data flows across multiple platforms
and asynchronous services.

Example from Practice

A large ecommerce platform struggled
with delays in third-party data syncs
that occasionally disrupted storefront
content, but the root cause was never
clear. Log retention was short, and
there were no consistent trace IDs to
follow events across services.

We extended log retention and added
trace identifiers to async messages.
This gave the team end-to-end
visibility, making it easier to trace
issues in real time and resolve them
before they reached the user.

In complex, distributed systems, problems
rarely show up where they start. Without
proper tracing, slow-query logging, or cross-
service correlation, bottlenecks hide in the
noise. Performance issues go unnoticed until
they hit users, and even then, it’s hard to
pinpoint what actually went wrong.

ETL and BI
Overloads

Example from Practice

A European luxury cosmetics brand
ran a daily pricing job that ballooned
from minutes to over three hours after
new calculation logic was introduced.
As the job expanded, it began to
interfere with storefront operations
and slow down user interactions.

A parallelized reimplementation
reduced runtime to under 20 minutes,
enabling daily execution again.

When ETL pipelines or BI tools query
production databases directly, especially
during business hours, they add load where
performance matters most.

Reporting and integration jobs often share
infrastructure with live systems.

As complexity grows, so does the risk of
collisions between back-end processes and
customer-facing operations. Without clear
scheduling, data isolation, or job optimization,
these background tasks can quietly degrade
performance.

Speed Through the Mess: How to Build Scalable Retrieval in Complex Stacks © Expert Soft, 2025 7

Architectural Landmines: What’s Really Behind the Lag

Data Bloat and

Lack of TTL

Example from Practice

A leading jewelry retailer noticed that
order lookups and reporting
operations were slowing down,
especially during high-traffic periods.
Years of historical data, including
completed orders, returns, and stale
session records, were stored in the
same tables used for live operations.
With no archival strategy in place,
even routine queries became heavier
over time.

We introduced a smart cleanup flow
that moved aged records into an
archive layer outside transactional
storage. Query speed improved
immediately, and the system became
more predictable under load.

As systems grow, so does the data they store —
session logs, old configurations, abandoned
carts, audit records. Without clear data
lifecycle rules or TTL (time-to-live) policies,

this accumulation clogs up databases and
slows down operations. Over time, even simple
queries have to sift through irrelevant history,
putting strain on indexing and storage.

Caching is one of the fastest ways to improve
performance, but only when it's consistent. In
many enterprise setups, caches are added
reactively at different layers: database, back-
end, API gateway, CDN, front-end. Without a
clear strategy, they fall out of sync, leading to
stale data, invalidation delays, or even
conflicting results across channels.

Uncoordinated
Caching Layers

Example from Practice

An omnichannel retailer faced product
availability mismatches during flash
sales due to uncoordinated caching
across five layers (database, back-end
service, API gateway, CDN, and front-
end). Updates weren’t properly
propagated, leading to stale data and
user confusion.

We introduced centralized cache
invalidation triggers tied to specific
data change events, along with
smarter TTL settings based on traffic
patterns. This brought consistency
across channels and kept performance
stable under pressure.

https://expert-soft.com/clients-and-cases/supercharging-a-global-ecommerce-platform-for-a-leading-jewelry-brand/?utm_source=whitepaper&utm_medium=Website-ES&utm_campaign=Speed-Through-the-Mess&utm_content=case_supercharging_global_ecom

Speed Through the Mess: How to Build Scalable Retrieval in Complex Stacks © Expert Soft, 2025 8

Architectural Landmines: What’s Really Behind the Lag

If you think slow queries are bad,

wait until two systems don’t talk at all.
Read how to build systems that stay
solid when everything starts talking
to everything.

Inefficient Data
Models and Queries

That lag creeps into the user experience:
carts take longer to load, dashboards hang,
and time-sensitive operations get stuck
waiting on data that should be instant.

Example from Practice

A renowned beauty retailer faced delays
in checkout and mini-cart views. The
cart data was stored in a highly
normalized structure, requiring multiple
joins and subqueries to reconstruct
each session. As the load increased,
these queries became a bottleneck.

We redesigned the model to store cart
data as compact JSON documents,
minimizing joins and making the
structure cache-friendly. This change
improved both performance and system
resilience, stabilizing performance
under load and enhancing the overall
user experience during peak activity.

Legacy schemas, over-normalization, and
missing indexes are classic culprits. As
platforms evolve, data models often become
bloated with excessive joins and complex
relationships, slowing down even the simplest
queries under load.

These issues don’t always show up early, but at scale, they become impossible to ignore.

What held up fine at 10,000 users can buckle at a million if the architecture isn’t ready for it.

The good news is that most of these pitfalls can be fixed without tearing everything down —

it just takes the right changes in the right places.

https://expert-soft.com/wp-content/uploads/2025/06/Website-Whitepaper-Integration-Ready-Ecommerce.pdf
https://expert-soft.com/wp-content/uploads/2025/06/Website-Whitepaper-Integration-Ready-Ecommerce.pdf

Speed Through the Mess: How to Build Scalable Retrieval in Complex Stacks © Expert Soft, 2025 9

How

To Survive
When the
Load Hits
Hard

Scaling starts with removing what doesn’t
serve speed. Instead of adding horsepower,
strong systems streamline what their queries
actually rely on — reducing clutter, reshaping
documents, and aligning indexing to how data
is used in real-world scenarios.

Remove complexity that doesn’t serve
the user

Audit where localization, references, or deep
joins are used for internal logic and simplify
when no user-facing need exists.

1.

Refactor What Your
Queries Depend On

Moves to Take

Example

Challenge: Performance issues due to
stored non-user-facing attributes,
leading to hundreds of unnecessary
joins.  

What we did: Removed unnecessary
localization logic on internal attributes
by switching to non-localized fields
where appropriate. 

Impact: Query load dropped by over
100× and memory usage fell under peak
traffic.

Once you know where the cracks form,
the next step is knowing how to
reinforce them on a real scale, not just
short-term fixes. We’ve seen the same
problems play out across high-load
platforms, and we’ve solved them under
real pressure.

So we gathered not just theoretical
fixes but field-tested strategies our
teams have used to ensure fast,
scalable, and reliable data retrieval.

Speed Through the Mess: How to Build Scalable Retrieval in Complex Stacks © Expert Soft, 2025 10

How To Survive When the Load Hits Hard

Structure data for the way it’s
queried, not for the way it was modeled

Split bloated documents and shift from generic
queries to targeted, purpose-built ones that
return only what the user needs.

2.

Example

Challenge: Product detail and category
pages were slow to render, especially
under traffic bursts. 

What we did: Combining Flexible Search
query optimization with targeted use of
Solr, we split monolithic product
documents into smaller segments and
optimized Flexible Search queries to
target only the needed data. 

Impact: PDP response times improved
significantly, making performance stable
even during seasonal spikes.

Align your indexing with

real-world access patterns

Run audits to detect which queries dominate
system load, then update indexes to match
actual, not theoretical, usage.

3.

Example

Challenge: Frequent query lags and
high CPU usage. 

What we did: Performed a deep
database index audit to analyze
production traffic, based on which we
rebuilt indexes to match real-world
access patterns. 

Impact: Query speed improved and CPU
overhead dropped across all core
operations.

Speed Through the Mess: How to Build Scalable Retrieval in Complex Stacks © Expert Soft, 2025 11

How To Survive When the Load Hits Hard

Caching is powerful, until it's fragmented. The fastest systems don’t cache aggressively, but
intelligently and in sync. That means aligning caching behavior across front-end, back-end, and
infrastructure to reduce duplication, stale data, and unnecessary load.

Make invalidation predictable, not
reactive

Create shared rules and batch logic between
back-end and front-end layers to ensure that
updates reflect quickly and reliably.

1.

Coordinate Your Caching at Every Layer

Moves to Take

Example

Challenge: Updated product and
content data took too long to appear on
the storefront due to uncoordinated
cache invalidation across layers. 

What we did: Implemented clear
invalidation rules across SAP back-
office and Spartacus front-end layers
that triggered cache clears at both ends
based on specific business events, and
scheduled batches to avoid collisions. 

Impact: Content propagation delays
were cut by 80%.

Use in-memory caching for low-churn
logic

Offload frequently accessed but rarely
changed data, such as configurations, into
lightweight, memory-first caches to prevent
unnecessary back-end hits.

2.

Example

Challenge: Back-end responsiveness
dropped as the system reevaluated
thousands of config entries on every call. 

What we did: Moved key configuration
logic into in-memory caching layers,
decoupling it from main transactional
flows. 

Impact: Back-end load decreased and
response times improved noticeably
under concurrent usage.

However, not all cache is a win.
We've seen teams go fast…

straight into chaos.

Learn how to spot the traps

https://expert-soft.com/wp-content/uploads/2025/06/Website-Whitepaper-The-Hidden-Cost-of-Cache.pdf

How To Survive When the Load Hits Hard

Stream changes as events,

not in batches

Replace batch-driven sync jobs with change-
event pipelines that reflect updates across
systems almost instantly — ideal for
dashboards, reporting, and user-facing tools. 

1.

Moves to Take

Example

Challenge: Customer-facing
dashboards showed stale data due to
periodic batch jobs that introduced
minutes-long delays. 

What we did: Implemented CDC using
AWS DMS and Kafka to stream updates
from MySQL to MongoDB, replacing the
batch ETL sync. 

Impact: Dashboards now reflect
updates within one minute, boosting
reliability and user confidence.

Match your message broker

to the criticality of the data

When data loss isn’t an option — like with
orders or payments — pick messaging systems
with built-in retries, persistence, and delivery
tracking rather than just raw throughput.

2.

Example

Challenge: A platform experienced
occasional order loss during network
disruptions, with no way to trace failed
deliveries. 

What we did: Switched from Kafka to
ActiveMQ to improve delivery reliability in
volatile network environments, leveraging
ActiveMQ’s built-in persistence and
message acknowledgment features. 

Impact: Order flow became more reliable
under unstable network conditions.

When systems grow, syncing data in real time becomes non-negotiable. Efficient architectures shift
from bulk jobs and blind retries to event-based flows, delta tracking, and reliable messaging built to
handle real-world edge cases.

Ensure Data Gets Where It Needs to Go Instantly

Switch full imports

to delta-based updates

For high-volume domains, importing only
changed records, instead of refreshing
everything, saves time, bandwidth, and CPU.

3.

Example

Challenge: Importing 60,000+
promotions caused slowdowns and
prolonged downtime during catalog
updates. 

What we did: Implemented delta sync
logic using checksums and timestamps
to update only what changed. 

Impact: Sync time dropped from
several minutes to just seconds.

Centralize and orchestrate your
background sync tasks

Unify scattered background tasks under one
scheduler to avoid collisions, improve timing
precision, and gain visibility across your sync
operations.

4.

Example

Challenge: Background jobs were
scattered across services, leading to
overlapping syncs and unstable load
behavior. 

What we did: Consolidated fragmented
sync tasks into a single centralized
scheduler to improve visibility and
scheduling precision. 

Impact: Sync reliability increased and
maintenance became easier across the
board.

Speed Through the Mess: How to Build Scalable Retrieval in Complex Stacks © Expert Soft, 2025 12

How To Survive When the Load Hits Hard

Clear Out What Doesn’t Need to Stick Around

When session data, temporary carts, and irrelevant records hang around too long, even simple
queries get bogged down. Scalable platforms bake in rules to retire what’s no longer useful, keeping
core operations lean.

Set TTL policies for

session-based data

Apply automatic expiration rules to clear out
data like “recently viewed” or user history after
it’s no longer relevant to business logic or user
experience.

1.

Moves to Take

Example

Challenge: The “recently viewed
products” table kept growing with stale
records, putting pressure on database
performance. 

What we did: Introduced TTL logic via
timestamp-based cleanup jobs,
ensuring expired data was regularly
purged from the storage. 

Impact: Session bloat was eliminated
and query speed improved across
related operations.

Auto-clean temporary carts and
abandoned activity

Define automated logic to regularly remove
carts and transient data that no longer lead to
conversion or interaction, keeping your
transactional tables focused and efficient.

2.

Example

Challenge: A growing number of empty
and abandoned carts triggered
performance issues. 

What we did: Introduced an auto-deletion
rule for inactive and empty carts, reducing
table volume. 

Impact: Cart-related queries became
faster and more consistent during traffic
spikes.

Speed Through the Mess: How to Build Scalable Retrieval in Complex Stacks © Expert Soft, 2025 13

Speed Through the Mess: How to Build Scalable Retrieval in Complex Stacks © Expert Soft, 2025 14

How To Survive When the Load Hits Hard

Keep Delivery Fast Even When the Content Isn’t

The more media, integrations, and redirects your system handles, the heavier each request gets.
Scalable systems don’t try to carry everything upfront — they shift non-critical loads downstream,
outsource static tasks to the edge, and simplify what the application has to process.

Defer media loading until it’s needed

Use lazy loading and viewport-based logic to
delay non-essential content, like images or
embedded assets, so core layout and logic
load first.

1.

Moves to Take

Example

Challenge: Category and campaign
pages loaded slowly due to dozens of
media assets rendering upfront. 

What we did: Implemented lazy loading
for image assets across key templates
to prioritize visible content and reduce
blocking. 

Impact: Initial page load times
improved by 5–12%, especially under
mobile and high-traffic scenarios.

Push lightweight logic to the edge

Offload routing, redirects, and simple rules
to the web server or CDN layer, freeing
your app layer to focus on core business
logic.

2.

Example

Challenge: Thousands of redirects were
processed through the application
layer, creating unnecessary load and
slowing down SEO-critical paths. 

What we did: Migrated redirect logic
from SAP Commerce Cloud into Apache
config rules, shifting it outside the app’s
request flow. 

Impact: Response times for redirected
URLs improved, and app-level
performance became more predictable.

Speed Through the Mess: How to Build Scalable Retrieval in Complex Stacks © Expert Soft, 2025 15

How To Survive When the Load Hits Hard

Fast systems don’t just run well — they make it obvious when something isn’t. Teams that scale
successfully invest in tooling that gives them full visibility: across services, layers, and devices. With
strong observability in place, they can catch issues early, track regressions before they spread, and
debug without the guesswork.

Implement platform-wide tracing

and code quality scanning

Use integrated observability and security
tools to catch performance regressions, bad
deploys, or risky code changes before they
cause downstream impact.

1.

Make It Easy to See What’s Slowing You Down

Moves to Take

Example

Challenge: The team lacked a unified
view of system health and code-level
risks, delaying root cause detection. 

What we did: Deployed Datadog for
system monitoring and added
SonarQube, Veracode, and X-Ray Scan
to tighten quality control across
environments. 

Impact: Regressions and security risks
were caught earlier in the cycle,
reducing deployment delays and
improving system stability.

Uncover front-end issues before
users report them

Use client-side analytics and visual replay
tools to identify slowdowns, rendering
glitches, or broken flows that aren’t visible
through back-end logs. 

2.

Example

Challenge: Bugs and layout issues
appeared inconsistently across
browsers, making them hard to
reproduce and fix.. 

What we did: Introduced Content
Square to centralize front-end logs and
replay user behavior across devices. 

Impact: Errors became easier to trace
and resolve, shortening response time
and reducing support load.

You’ve built the muscle —

now protect the core. Here's how to
keep your SAP data sharp, synced,
and trusted.

https://expert-soft.com/blog/how-to-ensure-data-integrity/?utm_source=whitepaper&utm_medium=Website-ES&utm_campaign=Speed-Through-the-Mess&utm_content=article_data_integrity
https://expert-soft.com/blog/how-to-ensure-data-integrity/?utm_source=whitepaper&utm_medium=Website-ES&utm_campaign=Speed-Through-the-Mess&utm_content=article_data_integrity

Speed Through the Mess: How to Build Scalable Retrieval in Complex Stacks © Expert Soft, 2025 16

From Insight
to Action —
Scalability
Checkpoint

Scalable data retrieval has nothing to do with
one silver bullet, as it’s about how everything
connects.

Clean models, smart caching, synced updates,
background jobs that don’t clash, and visibility
when things go sideways — that’s what keeps
systems fast when complexity kicks in.

You’ve seen the symptoms. You’ve seen how
they’re solved. If you’re ready to take a closer
look at your own setup, this checklist offers a
quick-hit way to surface the areas that matter
most.

Use it as a gut check or a starting point.

If most of these boxes are checked, you're
likely in a solid place. If not, the good news is
that improvements are achievable. You can
make incremental yet impactful changes to
deliver fast, scalable data retrieval under
enterprise load.

Do you use event-based processing (CDC,
MQs) instead of daily ETLs?

Are heavy cron jobs parallelized or
migrated to stream processing?

Are your database schemas optimized for
read-heavy access patterns?

Are non-essential joins replaced with
denormalized fields or document models?

Do you partition or shard large datasets to
reduce query load? 

Are all major cache layers (CDN, back-end,
DB) coordinated?

Is invalidation logic based on clear TTL
rules, event triggers, or both?

Do you review and test caching behavior
regularly to avoid silent failures?

Data Sync & Processing

Data Architecture

Caching

Do you have structured logs, distributed
tracing, and proactive alerting in place?

Are slow queries and system hotspots
tracked and regularly analyzed? 

Do you enforce archiving for historical or
low-use records?

Are stale sessions, logs, and unused
records cleaned up automatically?

Data Retention

Observability & Monitoring

At Expert Soft, we work with
complex systems every day, helping
teams untangle what’s slowing them
down and put scalable foundations
in place. If you ever need a second
set of eyes, we’re around.

About Expert Soft
Expert Soft is a targeted ecommerce software
delivery company, partnering with Fortune
500 companies and global corporations
across the US and EU. With SAP Commerce
Cloud and Java as our backbone, we know how
to ensure scalable and high-performing
solutions that can handle 1 mln requests per
second, delivering a smooth customer
experience.

Developing a payment engine that saved our
client about $100 million in operational
expenses, ensuring multi-country platform
support, adapting solutions for new market
entry with tailored enhancements — these are
just a few of the challenges our specialists
tackle.

We aim to deliver more than a software
system. We aim to deliver tailored solutions
that maximize profitability within available
resources. Our success is driven by:

Professional team

No offshore outsourcing and our
team’s average tenure of 4+ years
means you get seasoned problem-
solvers, not just coders.

High-level security

Approved by assessments from global
companies, who are leaders in their
respective industries.

Clients

We work with corporations around the
world with revenue of over $20 billion
and 150K+ employees.

Approvals by audits

Our ongoing work with corporations is
consistently validated through
rigorous audits, both by internal teams
and Big 4 consulting firms.

Budget efficiency

By carefully aligning technology
investments with your business goals,
we ensure optimal value and cost-
effectiveness.Team Strengths

Speed Through the Mess: How to Build Scalable Retrieval in Complex Stacks © Expert Soft, 2025 17

All our engineers
have a university
background

Specialists excel
their skills in our
training LABs

Perfect
English skills

Ready to
help 24/7

Speed Through the Mess: How to Build Scalable Retrieval in Complex Stacks © Expert Soft, 2025 18

About Expert Soft

E-commerce platform

Headless commerce

Micro UI front-end

Migration&Integration

Payment engine

Microservices architecture

Content management

Redesign

UX/UI Design
UX Research, UI Design,
Figma, Adobe, Sketch

Back-end
Java EE, Spring, SAP
Commerce (Cloud),
Node.JS.

DevOps
Docker, Kubernetes, CI/
CD

Quality Assurance
Manual Testing, Test
Automation

Front-End
HTML, CSS, JavaScript
(Angular, React, Vue,
Next, TypeScript,
Jquery), Spartacus

Expert Soft Excels In

Our

Tech Core

Targeted Domains

Manufacturing

Retail

Fintech

Telecom Healthcare

Wholesale

Speed Through the Mess: How to Build Scalable Retrieval in Complex Stacks © Expert Soft, 2025 19

About Expert Soft

Pavel Tsarykau 
CEO & Founder

of Expert Soft 

Ekaterina Lapchanka 
Chief Operating Officer

kate.lapsenco@expert-soft.com 

Let’s connect+1 585 4997879 

+371 25 893 015

Let's talk solutions!

expert-soft.com

Shared Paths, Lasting Ecom Victories

LinkedIn

https://www.linkedin.com/in/paul-tsarykau-5a583a147/
tel:+15854997879
tel: +371 25 893 015
https://expert-soft.com/?utm_source=whitepaper&utm_medium=Website-ES&utm_campaign=Speed-Through-the-Mess&utm_content=site_link
https://www.linkedin.com/company/expert-software-development/

