
The Hidden Cost

of Cache: How Misuse
Undermines Performance
in E-commerce Systems

Where caching goes wrong and
how mature systems stay fast

Many developers, especially those working on
high-load ecommerce systems, assume that
the more they use cache, the better the
performance. But here’s the thing: caching
isn’t always helpful. In fact, when used without
a clear strategy or applied blindly, it can
degrade performance, strain resources, and
introduce hard-to-catch bugs.

This whitepaper looks at the less obvious side
of caching, revealing the moments when it
starts to work against you. Based on Expert
Soft’s hands-on experience, the document
includes real-world red flags, examples of
over-optimization, and field-tested best
practices that challenge common
assumptions.

You’ll also find real cases, where caching
added complexity instead of speed and how
we at Expert Soft recognized and resolved
those issues.

As well, we’ll show you when not to cache and
why that decision marks true engineering
maturity. No fluff, just hard-earned insights.
Let’s dive in.

Warning Signs That Your Cache Is Hurting You

Where Cache May Eat Performance

Best Practices from the Field

When Not to Cache

3

7

9

11

Table of Contents

The Hidden Cost of Cache: How Misuse Undermines Performance in High-Load Systems © Expert Soft, 2025 2

Smart systems need smarter thinking.
Find ours in your LinkedIn feed

join!

Warning Signs That Your
Cache Is Hurting You
When a response takes five seconds, alarms go off and teams jump into action. Obvious problems
get obvious attention. But what if everything seems fine? The cache is configured, the system is
stable, so it definitely can’t be the cache. But don't leap to conclusions.

These red flags show that your cache is off, even if the app “still works”

Cache hit rate is high, but performance
doesn’t improve 

Memory usage creeps up during indexing
or imports 

Cache invalidation depends on human
actions 

Same cache logic for static

and dynamic data 

Cache might be working, but for the
wrong thing. You’re likely to spend
memory and effort optimizing something
that no longer impacts user experience.

Without smart eviction, the cache fills up
with bulky temporary data. You waste
memory, strain infrastructure, and gain
little-to-no performance in return.  

One forgotten refresh opens up space for
stale data, bugs, and user-facing errors.
It’s error-prone, non-scalable, and usually
signals poor architecture.  

Different data types, different behaviors,
and treating them the same leads to stale
stock, wrong prices, and bugs your users
will definitely notice.

Frequent cache misses despite active
caching 

Caching introduces more delay 

Database is still under load with caching
enabled 

High miss rates usually mean your key
design or TTLs are misaligned with access
patterns, leading to avoidable DB calls and
latency. 

If adding a cache makes responses slower,
it’s often due to remote cache location or
heavy (de)serialization overhead.  

Improper cache usage. e.g. cache
stampedes or no pre-warming, may
increase DB traffic instead of relieving it,
hurting the performance.

Remember, a quiet system does not always
mean a health system.

So, keep an eye out.

The Hidden Cost of Cache: How Misuse Undermines Performance in High-Load Systems © Expert Soft, 2025 3

https://www.linkedin.com/company/expert-software-development/posts/?feedView=all

Where Cache May Eat
Performance Instead

of Improving It

Over-Caching

If caching improves performance, then
caching as much data as possible may seem
like a smart move, especially in high-load
systems where speed is king. But in this case,
you risk ending up overarching, creating
hidden pressure points:

Over-caching slows down the system by
bloating the cache, polluting memory, and
masking real performance issues. It gives a
false sense of optimization and forces
developers to find issues elsewhere, while the
cache itself quietly becomes the bottleneck.

Cache fills with low-priority objects,
pushing out actually important ones.

Serialization/deserialization time
increases, especially with complex
objects that rarely need to be reused.

CPU cycles maintain entries no one
reads, increasing garbage collection
frequency in JVM-based systems or
memory churn in cloud-native
environments.

If you spotted the symptoms that caching
in your system is failing, it’s time to look
deeper at the reasons. The truth is that
there’s no single cause. But we listed
some of the most common places where
caching, instead of helping, quietly eats
performance, bloating memory,
introducing unnecessary load, and
slowing down what it was meant to
accelerate.

The Hidden Cost of Cache: How Misuse Undermines Performance in High-Load Systems © Expert Soft, 2025 4

Where Cache May Eat Performance Instead of Improving It

Disproportionate Gains

It’s a common trap to push the cache too hard
for minimal wins. Say you trim response time
from 80ms to 50ms, which is invisible to
users. Meanwhile, you may store heavy entries
in memory, syncing data across nodes, and
burning resources to chase a micro-
optimization. Multiply that by thousands of
requests per minute, and you’re consuming
serious infrastructure for barely noticeable
user-facing improvement.

Here, you should also remember that every
kilobyte in cache has a cost. If it’s not
improving speed, it’s just squatting in your
memory.

Performance gains should always be
proportional to what they cost. Otherwise,
you're scaling inefficiency, not velocity. Always
weigh the benefit: if you’re not gaining real
responsiveness or reducing real load, that
cache might be eating more than it feeds.

Heavy Cache Traffic

When caching is too aggressive or misaligned
with system architecture, it can increase the
load, not reduce it.

In setups with Redis or Memcached, frequent
cache updates can flood the network with
internal calls. Instead of offloading the
system, your cache layer becomes the busiest
part of it. In distributed environments, it gets
worse, as syncing cache across nodes adds
replication delays and can break data
consistency under load.

When your cache constantly updates, it acts
more like a real-time database with all the
latency and none of the control.

We’ve seen systems slow down not because of
missing cache, but because of too many
cache operations. It’s a case of “optimized to
death”, where the caching layer eats more
performance than it saves.

The Hidden Cost of Cache: How Misuse Undermines Performance in High-Load Systems © Expert Soft, 2025 5

Don’t Just Cache the Main Query —
Look at Nested Data

Cache and Performance:
Best Practices from the
Field
It’s one thing to implement caching, but
it’s another to make it work reliably
under real traffic, evolving requirements,
and edge-case chaos. And on top of
that, you have to do it not only so that it
works, but so that it doesn't harm the
system and its performance.

There are some best practices from the
field — the kind of insights that come
from seeing what actually happens when
caching decisions meet scale,
complexity, and the unexpected.

It’s common to cache direct queries, such as
fetching a category by ID or loading static
reference data. But what often gets missed is
how that same static data gets reused deep
inside other operations.

We’ve seen this during large-scale indexing,
where product records include breadcrumb-
style category paths in multiple languages.
Categories are relatively static and already
cached, but when each product reconstructs
its full category tree, it triggers redundant
lookups, often bypassing the cache
altogether.

While it seemed like “we’re already caching
categories”, in practice, that doesn’t cover the
full data flow.

Caching shouldn’t stop at the entry point.
Trace how data flows through the system
because even static dependencies can turn
into dynamic bottlenecks.

From the field: 
By caching shared category metadata
used inside product indexing, we cut
processing time by a factor of 30.

The Hidden Cost of Cache: How Misuse Undermines Performance in High-Load Systems © Expert Soft, 2025 6

Cache and Performance: Best Practices from the Field

Build for Invalidation from the
Start

One of the most common sources of stale
data isn’t the cache logic itself, but how the
system handles changes outside that logic.

When data is modified directly in the database
without notifying the cache, and developers
are left to trigger invalidation manually,
inconsistencies start to build up.

This typically happens when cache
invalidation is treated as an afterthought.
There’s no internal tool or automated process
to update the cache when underlying records
change. And practice shows: human error is
inevitable. One overlooked step — often during
a rushed fix or urgent update — is enough to
leave users with outdated content.

Adding a cache is easy. Invalidating it — that’s
the real challenge. And it needs to be
addressed from the start, not bolted on later.

From the field: 
If a fully automated invalidation system
is not in your project scope, introduce a
small internal tool that pairs DB
updates with cache refreshes to avoid
manual intervention.

Solutions like this demand deep
system insight and engineering
capabilities, exactly what we at
Expert Soft bring to enterprise
ecommerce development.

Explore how

Know When to Look Beyond Cache

Effective caching decisions come from
understanding how the system really behaves.
There are no universal rules that apply
everywhere.

And sometimes, it means looking beyond
traditional caching and turning to more
specialized solutions.

For example, in a typical ecommerce catalog
tightly integrated with an ERP, product
availability and pricing shift constantly across
stores, regions, or time slots. In this case,
caching volatile data at the application layer
becomes more of a liability than an
optimization.

A search engine with built-in caching and
index-level freshness tracking can act as a
middle layer, serving current data without
overloading the database or relying on manual
invalidation.

This kind of setup goes a step beyond
conventional caching. The search engine
functions as both an index and a smart cache,
selectively returning fresh results without
reprocessing everything. It’s not the most
straightforward path, but when data changes
frequently and at scale, it’s often the only one
that holds.

From the field:

The ability to step back, understand the
business logic, and identify which data
truly needs to be fast — in the context of
that specific system — is the sign of true
engineering maturity.

https://expert-soft.com/services/ecommerce-web-development/?utm_source=whitepaper&utm_medium=Website-ES&utm_campaign=The-Hidden-Cost-of-Cache&utm_content=ecommerce_web_dev_page

Cache and Performance: Best Practices from the Field

Build TTLs into Real Behavior

Setting a TTL on a cache entry might feel like
a way to ensure data doesn’t overstay its
welcome. But in high-load systems, TTLs
often don’t work the way teams expect.

In practice,

 The entry stays in memory
indefinitely, never triggering the eviction you
planned for. What was intended as temporary
storage turns into a permanent memory
resident.

That’s why TTLs should never be set and
forgotten. They need to reflect not just data
volatility, but actual traffic behavior. And just
like any part of your caching logic, they need
to be verified in staging and monitored in
production.

frequently accessed data can
keep getting refreshed before the TTL
expires.

From the field: 
In many systems, TTLs are configured
but rarely tested under load. They
often don’t fire as expected due to
steady reuse.

Don’t Cache What’s Already Fast

Not everything that’s reused needs to be
cached. And not everything that can be
cached is worth it.

Rushing to add caching to parts of the system
that are already fast, such as lightweight
calculations or basic string operations, at
best, adds overhead. At worst, it introduces
unnecessary complexity without any
performance gain.

Take prebuilt product URLs, for example. In
many systems, caching them isn’t needed at
all as those operations are typically fast and
already optimized. But that assumption
doesn’t always hold. In Java, string template
matching comes with its own cost due to
language-level specifics.

The point isn’t whether URL caching is “right”
or “wrong”. It’s that caching decisions need to
be grounded in how your stack behaves under
load as what’s unnecessary in one technology
can be essential in another.

From the field: 
In one project, caching prebuilt product
URLs significantly improved
performance not because the logic was
complex, but because Java specifics
made it worth it.

Cache and Performance: Best Practices from the Field

Always Monitor Your Cache

Once a cache is in place, it’s easy to forget
about it, allowing it to live unnoticed and
possibly hurting system performance. That’s
why monitoring isn’t optional. Without
visibility, it’s impossible to know when your
cache is bloated, stale, or doing more harm
than good.

You should be tracking more than hit/miss
ratios. Volume, memory usage, freshness of
data, and eviction behavior all offer crucial
insight into how your cache behaves under
load. When these metrics are ignored, the
cache grows unchecked, living in RAM that’s
often more expensive and more limited than
you may think.

Monitoring gives you the data to right-size your
cache, detect early failures, and keep caching
aligned with actual performance needs.

From the field (observation): 
In our projects, we use tools like DataDog
to catch memory pressure and stale data
issues before they degrade system
performance or inflate cloud costs.

Test Cache Logic as Part of CI/CD

Caching is often treated as a helper layer —
something that improves speed but doesn’t
need to be tested like core logic. But in reality,
caching can introduce subtle bugs: outdated
data, inconsistent responses, and edge cases
that only show up after deployment.

Cache issues can arise when key formats
change, TTLs don’t behave as expected, or
invalidation logic quietly breaks. And if that
logic isn’t covered in automated tests, those
problems reach production where they’re
harder to debug and more expensive to fix.

Testing the cache like any other part of the
system through integration and scenario tests
in the pipeline ensures that it does what you
expect, even as the application evolves.

From the field: 
Including cache behavior in CI/CD
with validating key generation, TTL
expiration, and invalidation rules,
helps catch stale data bugs before
release.

Take modern cloud infrastructure. Fully
managed databases from top cloud providers
are already optimized for fast, repeatable
reads. In these environments, adding a
custom cache layer can actually slow things
down. Serialization, deserialization, memory
pressure — all of it adds overhead with little to
no real benefit.

Caching doesn’t guarantee improvement.

In some stacks, it becomes the bottleneck.
Engineering maturity means knowing when to
walk away from it.

Real-world example

On one of Expert Soft’s projects, caching was
added to speed up access to frequently
queried data. But the invalidation logic was
flawed: it didn’t trigger as expected, leading to
stale and even deleted records being served.
The right call was to remove the cache
entirely.

After all, what determines whether caching is
worth it? Context. Data volatility, read/write
ratios, infrastructure specifics, and
consistency requirements all shape what kind
of caching — if any — should be used.

That’s how we approach caching strategy at
Expert Soft: with sharp attention to context,
load behavior, and business-critical data
flows. Because the best systems aren’t just
fast — they’re fast for the right reasons.

Knowing When Not to
Cache: The Mark of
Engineering Maturity
The examples and best practices in this
whitepaper show how excessive or poorly
implemented caching can hurt performance
and system stability. From planning
invalidation early to monitoring memory usage
and eviction cycles — caching demands
attention at every step. But here’s one more
principle: sometimes, the smartest move is
not to cache at all.

The Hidden Cost of Cache: How Misuse Undermines Performance in High-Load Systems © Expert Soft, 2025 10

About Expert Soft
Expert Soft is a targeted ecommerce software
delivery company, partnering with Fortune
500 companies and global corporations
across the US and EU. With SAP Commerce
Cloud and Java as our backbone, we know how
to ensure scalable and high-performing
solutions that can handle 1 mln requests per
second, delivering a smooth customer
experience.

Developing a payment engine that saved our
client about $100 million in operational
expenses, ensuring multi-country platform
support, adapting solutions for new market
entry with tailored enhancements — these are
just a few of the challenges our specialists
tackle.

We aim to deliver more than a software
system. We aim to deliver tailored solutions
that maximize profitability within available
resources. Our success is driven by:

Professional team

No offshore outsourcing and our
team’s average tenure of 4+ years
means you get seasoned problem-
solvers, not just coders.

High-level security

Approved by assessments from global
companies, who are leaders in their
respective industries.

Clients

We work with corporations around the
world with revenue of over $20 billion
and 150K+ employees.

Approvals by audits

Our ongoing work with corporations is
consistently validated through
rigorous audits, both by internal teams
and Big 4 consulting firms.

Budget efficiency

By carefully aligning technology
investments with your business goals,
we ensure optimal value and cost-
effectiveness.Team Strengths

All our engineers
have a university
background

Specialists excel
their skills in our
training LABs

Perfect
English skills

Ready to
help 24/7

The Hidden Cost of Cache: How Misuse Undermines Performance in High-Load Systems © Expert Soft, 2025 11

About Expert Soft

E-commerce platform

Headless commerce

Micro UI front-end

Migration&Integration

Payment engine

Microservices architecture

Content management

Redesign

UX/UI Design
UX Research, UI Design,
Figma, Adobe, Sketch

Back-end
Java EE, Spring, SAP
Commerce (Cloud),
Node.JS.

DevOps
Docker, Kubernetes, CI/
CD

Quality Assurance
Manual Testing, Test
Automation

Front-End
HTML, CSS, JavaScript
(Angular, React, Vue,
Next, TypeScript,
Jquery), Spartacus

Expert Soft Excels In

Our

Tech Core

Targeted Domains

Fintech

Telecom Healthcare

Wholesale

Retail

Manufacturing

The Hidden Cost of Cache: How Misuse Undermines Performance in High-Load Systems © Expert Soft, 2025 12

Smart Ways to Lower Ecommerce Infrastructure Costs Without Compromising Excellence © Expert Soft, 2024 18

About Expert Soft

Pavel Tsarykau 
CEO & Founder

of Expert Soft 

Ekaterina Lapchanka 
Chief Operating Officer

kate.lapsenco@expert-soft.com 

Let’s connect+1 585 4997879 

+371 25 893 015

Let's talk solutions!

expert-soft.com

Shared Paths, Lasting Ecom Victories

LinkedIn

https://www.linkedin.com/in/paul-tsarykau-5a583a147/
tel:+15854997879
tel: +371 25 893 015
https://expert-soft.com/?utm_source=whitepaper&utm_medium=Website-ES&utm_campaign=Whitepaper-Checkout-Disasters-that-Hide-in-Custom-Ecommerce-Flows&utm_content=site_link
https://www.linkedin.com/company/expert-software-development/

	1dc69393fdc8d1350620ec5182c3b7409466506a3be652cfddfb3a45167e1e06.pdf
	a71edb207c57dabd12bfe3b0fe579be85c6af936b13d6bb9d8ceb8beceb4925a.pdf

